Scalable Label Propagation for Multi-relational Learning on Tensor Product Graph
نویسندگان
چکیده
Label propagation on the tensor product of multiple graphs can infer multi-relations among the entities across the graphs by learning labels in a tensor. However, the tensor formulation is only empirically scalable up to three graphs due to the exponential complexity of computing tensors. In this paper, we propose an optimization formulation and a scalable Lowrank Tensor-based Label Propagation algorithm (LowrankTLP). The optimization formulation minimizes the rank-k approximation error for computing the closed-form solution of label propagation on a tensor product graph with efficient tensor computations used in LowrankTLP. LowrankTLP takes either a sparse tensor of known multi-relations or pairwise relations between each pair of graphs as the input to infer unknown multirelations by semi-supervised learning on the tensor product graph. We also accelerate LowrankTLP with parallel tensor computation which enabled label propagation on a tensor product of 100 graphs of size 1000 within 150 seconds in simulation. LowrankTLP was also successfully applied to multi-relational learning for predicting author-paper-venue in publication records, alignment of several protein-protein interaction networks across species and alignment of segmented regions across up to 7 CT scan images. The experiments prove that LowrankTLP indeed well approximates the original label propagation with high scalability. Source code: https://github.com/kuanglab/LowrankTLP
منابع مشابه
Multi-Label Learning on Tensor Product Graph
A large family of graph-based semi-supervised algorithms have been developed intuitively and pragmatically for the multi-label learning problem. These methods, however, only implicitly exploited the label correlation, as either part of graph weight or an additional constraint, to improve overall classification performance. Despite their seemingly quite different formulations, we show that all e...
متن کاملLearning Protein Functions from Bi-relational Graph of Proteins and Function Annotations
We propose here a multi-label semi-supervised learning algorithm, PfunBG, to predict protein functions, employing a bi-relational graph (BG) of proteins and function annotations. Different from most, if not all, existing methods that only consider the partially labeled proteinprotein interaction (PPI) network, the BG comprises three components, a PPI network, a function class graph induced from...
متن کاملTowards Scalable Speech Act Recognition in Twitter: Tackling Insufficient Training Data
Recognizing speech act types in Twitter is of much theoretical interest and practical use. Our previous research did not adequately address the deficiency of training data for this multi-class learning task. In this work, we set out by assuming only a small seed training set and experiment with two semi-supervised learning schemes, transductive SVM and graph-based label propagation, which can l...
متن کاملGraph-based semi-supervised learning for relational networks
We address the problem of semi-supervised learning in relational networks, networks in which nodes are entities and links are the relationships or interactions between them. Typically this problem is confounded with the problem of graph-based semi-supervised learning (GSSL), because both problems represent the data as a graph and predict the missing class labels of nodes. However, not all graph...
متن کاملDiffusion on a Tensor Product Graph for Semi-Supervised Learning Diffusion on a Tensor Product Graph for Semi-Supervised Learning and Interactive Image Segmentation
We derive a novel semi-supervised learning method that propagates label information as a symmetric, anisotropic diffusion process (SADP). Since the influence of label information is strengthened at each iteration, the process is anisotropic and does not blur the label information. We show that SADP converges to a closed form solution by proving its equivalence to a diffusion process on a tensor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.07379 شماره
صفحات -
تاریخ انتشار 2018